CIENCIAS BASICAS III

AREA: MEDICINA BUCAL

CREDITOS: 3 CODIGO: 2004

PRELACIONES:

PRELADO POR: CIENCIAS BASICAS II PRELA A: CIENCIAS BASICAS IV

RELACION ODONTOLOGO - PACIENTE

PERSONAL DOCENTE QUE COLABORA EN EL CURSO

CÁTEDRA DE FISIOLOGIA HUMANA:

Dra. Beatriz Cherubini de Ayala <u>Jefe de Cátedra</u>

Dra. Blanca Muller de Von Einem <u>Coordinador de la Materia</u>

Dra. Cecilia García Arocha

Dra. María Fernández de Cardozo

Dr. José V. Torres Mota

<u>CÁTEDRA DE HISTOLOGIA</u>:

Dr. Rafael Delgado <u>Jefe de Cátedra</u>

Dra. Margarita de Grigorov

Dr. Michael Nissnick Dr. Roberto Otero

Dra. Emilia Ochoa

OBJETIVOS GENERALES DEL CURSO:

Esta asignatura tiene por finalidad el estudio integrado desde el punto de vista estructural y dinámico de los diferentes líquidos orgánicos, los sistemas nervioso y muscular y del aparato cardio-vascular.

Fundamentación: el conocimiento de esta estructura y funcionalismo es necesario para la correcta comprensión de diversos temas de Patología General y Bucal.

Anatomía: breve reseña sobre la estructura macroscópica de los diversos órganos que constituyen los sistemas y aparatos, dictado por la Cátedra de Fisiología.

Histología: temas relacionados con la estructura microscópica de los diversos tejidos que constituyen los sistemas y aparatos.

Fisiología: estudio del funcionamiento y regulación de los diversos órganos que constituyen los sistemas y aparatos.

OBJETIVOS ESPECÍFICOS:

Señalados en las siguientes páginas y en los diversos materiales de apoyo escritos, realizados por la Cátedra de Histología y la Fisiología Humana.

FUNCIONAMIENTO DEL CURSO:

El programa del curso se desarrollará en tres aspectos:

- **Teórico:** en este programa intervendrá la Cátedra de Fisiología dictando los temas de la materia bajo la forma de exposiciones orales, complementadas con material de apoyo audiovisual y escrito, en las horas y días correspondientes al horario de cada sección.
- Teórico-práctico: este programa será dictado por la Cátedra de Histología, presentando su programa teórico con exposiciones orales complementadas con material de apoyo escrito y presentación audiovisual de su material práctico.
- Práctico: este programa comprenderá un montaje audiovisual y un trabajo de laboratorio sobre fisiología de la sangre, tres videos sobre: excitabilidad neuromuscular, perfusión de corazón de mamífero y presión arterial en mamífero.

REQUERIMIENTOS A CUMPLIR POR LOS ALUMNOS:

- a) Asistencia obligatoria a los temas teóricos de Fisiología y teórico-prácticos de Histología.
- b) Asistencia obligatoria a los trabajos prácticos y videos de Fisiología.

Nota: De acuerdo a los artículos I y II del Capítulo 1 del reglamento de asistencia a clases y del artículo 3, Capítulo II del cómputo de las inasistencias a clases de la Ley de Universidades, el porcentaje aprobado para la Facultad de Odontología por el Consejo Universitario es el siguiente: 25% de inasistencias para las clases teóricas y 15% para los trabajos prácticos.

- c) Para asistir el alumno a las exposiciones teóricas y trabajos prácticos, debe traer estudiado el tema para su mejor aprovechamiento.
- **d**) Para cumplir con el requisito anterior, el alumno debe comprar con anticipación el material de apoyo tanto de Fisiología como de Histología y las guías de trabajos prácticos.
- e) Para la asistencia a las clases teóricas tanto de Fisiología como de Histología el curso se dividirá en tres secciones, cuyos horarios y salones serán suministrados por la Coordinación General. El alumno deberá asistir a su grupo asignado.

EVALUACIÓN GENERAL:

Comprende dos aspectos: teórico y práctico. La evaluación teórica será realizada mediante tres exámenes parciales:

- El primer parcial corresponde a: 1ª Unidad: líquidos orgánicos que comprende: fisiología del agua y electrolitos e histofisiología de la sangre, y la primera parte de la 2ª Unidad: histología nerviosa y excitabilidad nerviosa.
- El segundo parcial corresponde a todo lo restante de la 2ª Unidad: fisiología de las sinapsis, histofisiología del tejido muscular, fisiología de los reflejos y fisiología del sistema nervioso autónomo.
- El tercer parcial corresponde a la 3ª Unidad: histofisiología cardio-vascular.

Nota: Los exámenes de desarrollo pueden variar, se podrán realizar con preguntas de desarrollo extenso o limitado, de interpretación, gráficos, problemas y preguntas de opción múltiple. El alumno para poder aprobar la parte teórica necesita un promedio entre los 3 parciales de 10 puntos o más. Esta parte teórica tiene un valor de 80% de la nota definitiva.

La evaluación práctica aportará un 20% de la nota definitiva. Dicha evaluación corresponderá a exámenes (de preguntas cortas) que se realicen en los trabajos prácticos correspondientes.

EVALUACIÓN TOTAL:	
Nota teórica: 3 exámenes parciales	80% de nota definitiva
Nota práctica:	20% de nota definitiva
	TOTAL 100% de la nota

Nota: El estudiante que no alcance los diez puntos de promedio entre los tres parciales tiene derecho a presentar el examen de reparación siempre y cuando haya cumplido con los requisitos de asistencia, conservando el 20% de su nota práctica obtenida. Aquellos alumnos que habiendo obtenido diez o más puntos de nota teórica entre los tres parciales, al sacarle el 80% y sumarle el 20% de la nota práctica, si dicha suma es menor de diez puntos tendrán que presentar también examen de reparación conservando todavía su 20% de práctica.

REQUERIMIENTOS A CUMPLIR POR LOS ALUMNOS:

Asistencia obligatoria a los temas teóricos de Fisiología y teórico-práctico de Histología.

• Asistencia obligatoria a los trabajos prácticos y videos de Fisiología.

UNIDAD I. LÍQUIDOS ORGÁNICOS.

OBJETIVO GENERAL: Que el estudiante sea capaz de: explicar los diferentes mecanismos relacionados con el agua y los electrolitos, así como también la morfología y funciones de la sangre.

OBJETIVOS ESPECÍFICOS:

- Comprender y conocer la importancia vital del agua, su distribución en el organismo y la relación e intercambio líquido y electrolítico entre los diferentes compartimientos a través de membranas biológicas.
- Entender y explicar los diferentes mecanismos (tr-activo y pasivo que se realizan en esos intercambios.
- Describir e identificar histológicamente los elementos formes de la sangre.
- Conocer los valores normales de esos elementos.
- Comprender y conocer las funciones de la sangre y de sus diferentes constituyentes

CONTENIDO PROGRAMÁTICO: TEMA Nº 1 FISIOLOGÍA DE LOS LÍQUIDOS DEL ORGANISMO

I. Importancia vital del agua.

- 1.- Propiedades fundamentales del agua en relación con la conservación de la vida:
 - 1.1. Como termoestabilizador.
 - 1.2. Como solvente.
- II. Origen y distribución del agua en el organismo.
 - 1.- Origen.
 - 2.- Distribución.
 - 2.1. Compartimiento intracelular.
 - 2.2. Compartimiento extracelular:
 - 2.2.1. Intravascular.
 - 2.2.2. Intersticial.
 - 2.2.3. Agua transcelular.
 - 2.2.4. Líquido que hidrata el tejido conjuntivo.
 - 3.- Composición de los líquidos extracelulares.
- III. Métodos para medir el volumen de los diversos compartimientos líquidos.
 - 1.- Agua total.
 - 2.- Agua extracelular.
 - 3.- Agua intravascular.
 - 4.- Agua intersticial.
 - 5.- Agua intracelular.
- IV. Relación e intercambio entre los compartimientos.
 - 1.- Características de la membrana biológica.
 - 2.- Factores que determinan la capacidad de una partícula para atravesar la membrana:
 - 2.1. Tamaño de la partícula.
 - 2.2. Solubilidad en los lípidos, coeficiente de repartición.
 - 2.3. Carga iónica. Grado de hidratación.
 - 3.- Permeabilidad de la membrana (selectiva). Tipos de permeabilidad: pasiva, activa y difusión facilitada.
 - 3.1. Transportes pasivos:
 - 3.3.1. Difusión libre de sustancias en soluciones acuosas.
 - 3.3.2. Difusión restringida por una membrana semipermeable.
 - 3.3.3. Osmosis.
 - 3.3.4. Presión osmótica.
 - 3.3.5. Concepto de osmolaridad.
 - 3.3.6. Ultrafiltración.

PINOCITOSIS

- 1) Transporte activo.
- 2) Difusión facilitada.
- **V.** Equilibrio iónico.

- 1.- Presencia de iones no difusibles. Equilibrio de Gibbs-Donnan.
- 2.- Transporte activo de electrolitos.

TEMA N° 2: HISTOLOGÍA DE LA SANGRE

- I. Definición.
- II. Funciones generales de la sangre
- III. Métodos de estudio.
- IV. Características generales de la sangre.
- V. Elementos figurados de la sangre.
 - 1.- Eritrocitos:
 - 1.1. Estructura.
 - 1.2. Función.
 - 2.- Leucocitos:
 - 2.1. Granulocitos:
 - 2.1.1. Neutrófilos:
 - 2.1.1.1 Estructura.
 - 2.1.1.2. Función.
 - 2.2. Eosinófilos:
 - 2.2.1. Estructura.
 - 2.2.2. Función.
 - 2.3. Basófilos:
 - 2.3.1. Estructura.
 - 2.3.2. Función.
 - 2.4. Agranulocitos:
 - 2.4.1. Linfocitos.
 - 2.4.1. Estructura.
 - 2.4.2. Función.
 - 2.5. Monocitos:
 - 2.5.1. Estructura.
 - 2.5.2. Función.
 - 3.- Plaquetas:
 - 3.1. Estructura.
 - 3.2. Función.

TEMA Nº 3: FISIOLOGÍA DE LA SANGRE

- I. Funciones de la sangre.
 - 1.- Funciones de transporte:
 - 1.1. Productos finales de la digestión.
 - 1.2. Gases disueltos.
 - 1.3. Productos finales del metabolismo.
 - 1.4. Hormonas.
 - 2.- Funciones de regulación:

- 2.1. Termorregulación.
- 2.2. Equilibrio ácido-básico.
- 3.- Funciones de defensa:
 - 3.1. Inespecífica.
 - 3.2. Específica.
 - 3.3. Coagulación.
- II. Constituyentes de la sangre.

PLASMA SANGUÍNEO

- 1.- Constituyentes del plasma:
 - 1.1. Gases disueltos.
 - 1.2. Iones inorgánicos.
 - 1.3. lones orgánicos.
- 2.- Métodos de fraccionamiento de proteínas.
- 3.- Origen de las proteínas plasmáticas.
- 4.- Albúminas. Características y funciones:
 - 4.1. Intervención en el desarrollo de la presión coloidosmótica.
 - Importancia de la presión coloidosmótica en el intercambio capilar-tejido.
 - 4.2. Función de nutrición.
 - 4.3. Función de regulación del equilibrio ácido-básico.
 - 4.4. Función de mantener los glóbulos rojos en suspensión.
 - 4.5. Función de transporte.
- 5.- Globulinas. Características y funciones:
 - 5.1. Protectora o de defensa.
 - 5.2. Factores determinantes de los grupos sanguíneos.
 - 5.3. De defensa específica.
- 6.- Lipoproteínas.
- 7.- Glicoproteínas. Características y funciones:
 - 7.1. Transferrina.
 - 7.2. Haptoglobinas.
 - 7.3. Ceruloplasminas.
- 8.- Fibrinógeno. Características y funciones:
 - 8.1. Papel de la coagulación sanguínea.
- III. Coagulación sanguínea.
 - 1.- Etapas:
 - 1.1. Formación del coágulo. Reacción fibrinógeno-fibrina.
 - 1.2. Retracción del coágulo.
 - 1.3. Disolución del coágulo.
- IV. Reacciones que conducen a la formación del coágulo.

FORMAS DE COAGULACIÓN:

- 1.- Coagulación intrínseca.
- 2.- Coagulación extrínseca.

PRUEBAS USADAS EN EL ESTUDIO DE LA COAGULACIÓN:

- 1.- Tiempo de sangría.
- 2.- Tiempo de coagulación.
- 3.- Tiempo de protrombina.

Hemostáticos:

- 1.- Mecánicos.
- 2.- Químicos.

Anticoagulantes:

- 1.- Fisiológicos.
- 2.- Artificiales:
 - 2.1. In vitro.
 - 2.2. In vivo.

V. ERITROCITOS.

- 1.- Concentración y contenido relativo en sangre.
- 2.- Producción.
- 3.- Vida media y destrucción.
- 4.- Eritrosedimentación.
- 5.- Grupos sanguíneos:
 - 5.1. Sistema ABO.
 - 5.2. Factor RH.

VI. LEUCOCITOS.

- 1.- Diapédesis.
- 2.- Quimiotáxis.
- 3.- Fagocitosis.

VII. PLAQUETAS.

VIII. OTROS FACTORES.

ESTRATEGIA (METODOLOGÍA): Exposiciones teóricas. Exposiciones teórico prácticas. Trabajo práctico de laboratorio.

ESTRATEGIA (ACTIVIDADES):

- a) Exposición teórica y proyección de diapositivas acerca de la fisiología del aqua y electrolitos.
- b) Exposición teórico-práctica de la histología de la sangre.
- c) Exposición teórico-práctica de la fisiología de la sangre.
- d) Dirección y discusión del trabajo de laboratorio de fisiología de la sangre.

ACTIVIDADES DE LOS ALUMNOS:

- Asistencia obligatoria a las diversas exposiciones teóricas y teóricoprácticas.
- Asistencia obligatoria a los trabajos de laboratorio de fisiología de la sangre.
- Lectura y preparación previa de cada uno de los temas que componen la unidad.
- Estudio previo de cada uno de los experimentos incluidos en la práctica de fisiología de la sangre.

RECURSOS:

Medios audiovisuales tales como:

- Transparencias.
- Diapositivas.
- Montaje audiovisual
- Material de laboratorio.

EVALUACIÓN:

Primer examen parcial (teórico).

Para más detalles, ver evaluación general.

BIBLIOGRAFÍA:

Específica:

Material de apoyo realizado por las Cátedras de Histología y Fisiología.

Complementaria:

Histología Básica de Junqueira y Carneiro.

Bases Fisiológicas de la Práctica Médica de Bess y Taylor.

Tratado de Fisiología Médica de Arthur Guyton.

UNIDAD II.

HISTOLOGÍA Y FISIOLOGÍA DEL SISTEMA NEURO-MUSCULAR

OBJETIVO GENERAL:

1. Que el estudiante sea capaz de: conocer la estructura de nervio y músculo, comprender y explicar los fenómenos de excitabilidad nerviosa y muscular, y su propagación a través de las diferentes sinapsis.

OBJETIVOS ESPECÍFICOS:

- Describir e identificar histológicamente los elementos del tejido nervioso y muscular.
- 2. Comprender y conocer los mecanismos iónicos que dan origen a los fenómenos de excitabilidad nerviosa y muscular.
- **3.** Comprender y conocer la transmisión del impulso a nivel de las diferentes sinapsis.

- **4.** Describir anatómicamente un arco reflejo (somático y vegetativo).
- **5.** Comprender y conocer los mecanismos de un arco reflejo (somático y vegetativo).
- 6. Clasificar los diferentes reflejos.
- 7. Describir anatómicamente el S.N.A. con sus dos divisiones.
- **8.** Comprender y conocer los mecanismos de ajuste y adaptación que realiza el S.N.A.

CONTENIDO PROGRAMÁTICO:

TEMA Nº 1 HISTOLOGÍA DEL SISTEMA NERVIOSO

- I. Introducción y definiciones.
 - 1.- La neurona.
 - 2.- Prolongaciones de la neurona:
 - 2.1. Dendritas.
 - 2.2. Axón.
 - 3.- Sinapsis.
 - 4.- Clasificación de las neuronas de acuerdo a sus prolongaciones.
 - 5.- La fibra nerviosa.
 - 6.- Arco medular reflejo simple.
 - 7.- Clasificación histológica de las fibras nerviosas.
 - 8.- Nervios periféricos. Participación del tejido conjuntivo para formar los nervios.
 - 9.- La neuroglia.
 - 10.- Terminaciones nerviosas: descripción de algunas de ellas.
 - 11.- Clasificación según:
 - 11.1. La fisiología...
 - 11.2. La anatomía.
 - 11.3. La histología.

TEMA Nº 2 HISTOLOGÍA DEL TEJIDO MUSCULAR

- **I.** Introducción y definición.
 - 1.- Clasificación:
 - 1.1. Tejido muscular liso.
 - 1.2. Tejido muscular estriado esquelético.
 - 1.3. Tejido muscular estriado cardíaco.
 - 2.- Músculo liso:
 - 2.1. Dimensiones.
 - 2.2. Estructura.
 - 2.3. Ubicación.
 - 2.4. Relación entre ellos.
 - 3.- Músculo estriado esquelético:

- 3.1. Dimensiones.
- 3.2. Estructura.
- 3.3. Mecanismo de contracción de la sarcomera.
- 3.4. Participación del tejido conjuntivo en la formación de los órganos musculares.

TEMA N° 3 EXCITABILIDAD NERVIOSA

- Introducción.
 - 1.- Estímulo.
 - 2.- Excitación.
 - 3.- Irritabilidad.
 - 4.- Impulso.
- **II.** Principios básicos de electricidad y su aplicación en los fenómenos de excitabilidad.
 - A.- Principios básicos de electricidad.
 - 1.- Electricidad en conductores metálicos:
 - 1.1. Concepto de átomo (núcleo, electrón, protón, neutrón).
 - 1.2. Diferencia de potencial.
 - 1.3. Medida de las cargas eléctricas.
 - 1.4. Ley de Ohm.
 - 1.5. Elementos y símbolos de un circuito eléctrico:
 - 1.5.1. Batería.
 - 1.5.2. Resistencia.
 - 1.5.3. Capacitador o condensador.
 - 2.- Analogía de un circuito con la membrana biológica.
 - 3.- Instrumentos utilizados para medir diferencias de potencial: voltímetros y oscilógrafos.
 - 4.- Diferentes procedimientos utilizados para estimular:
 - 4.1. Estímulo:
 - 4.1.1. Mecánicos.
 - 4.1.2. Químicos.
 - 4.1.3. Eléctricos.
 - 4.2. Características del estímulo:
 - 4.2.1. Intensidad (subumbrales, umbrales, máximos, supramáximos).
 - 4.2.2. Duración.
 - 4.2.3. Frecuencia.
 - 5.- Electricidad en soluciones:
 - 5.1. Principales iones en biología.
 - 5.2. Movilidad iónica.
 - B.- Aplicación de los principios de electricidad a los fenómenos de excitabilidad nerviosa.

- 1.- Distribución iónica dentro y fuera de la célula nerviosa.
- 2.- Fenómenos eléctricos que ocurren en las membranas eléctricamente excitables:
- 2.1. Potencial de reposo de la membrana y fuerzas que lo originan:
 - 2.1.1. Fuerzas que mueven a los iones (cloro, potasio, sodio, bomba de sodio-potasio).
 - 2.1.2. Conclusiones con respecto al potencial de membrana.
 - 2.2. Potencial de acción:
 - 2.2.1. Registro del potencial de acción.
 - 2.2.2. Artefacto del estímulo.
 - 2.2.3. Período de latencia.
 - 2.2.4. Potencial de acción.
 - 2.2.5. Duración de los potenciales.
 - 2.2.6. Metabolismo del nervio.
 - 2.3. Períodos refractarios: absoluto y relativo.
- 3.- Ley del todo o nada.
- 4.- Acomodación.
- 5.- Propagación del potencial de acción:
 - 5.1. Conducción de las fibras amielínicas.
 - 5.2. Conducción saltatoria.
 - 5.3. Conducción ortodrómica y antidrómica.
- 6.- Bloqueo de la conducción.
- **III.** Diversos tipos de fibras nerviosas.
 - 1.- Clasificación.
 - 2.- Nervios mixtos.
 - 2.1. Potenciales de acción compuestos.

TEMA Nº 4 FISIOLOGÍA DEL TEJIDO MUSCULAR

- I. Introducción.
- II. Organización microscópica y molecular del músculo esquelético.
 - 1.- Fibra muscular esquelética. Miofibrillas. Filamentos delgados. Filamentos gruesos. Proteínas musculares que intervienen en el proceso de contracción.
 - 2.- Retículo sarcoplásmico. Túbulos transversos. Triadas.
- III. Características eléctricas del músculo esquelético.
 - 1.- Potencial de reposo y potencial de acción.
 - 2.- Propagación de la excitación a través de la membrana y dentro de la fibra muscular.
- IV. Actividad contráctil del músculo esquelético.
 - 1.- Aspectos bioquímicos de la contracción muscular.

- 2.- Papel regulador del calcio.
- 3.- Contracción muscular. Teoría del deslizamiento.
- 4.- Relajación.
- V. Características de la contracción.
 - 1.- Sacudida simple.
 - 2.- Relación entre el fenómeno eléctrico y el mecánico.
 - 3.- Suma de ondas:
 - 3.1. Tétanos imperfectos o incompletos.
 - 3.2. Tétano perfecto o completo.
 - 3.3. Fenómeno de la escalera.
- **VI.** Unidad motora.
- **VII.** Ley del todo o nada. Relación entre la intensidad del estímulo y la magnitud de la respuesta.
- VIII. Contracción isométrica. Contracción isotónica.
- IX. Músculo liso.
 - 1.- Estructura y naturaleza química de las células musculares lisas.
 - 2.- Clasificación del músculo liso.
 - 3.- Músculo liso de unidades múltiples.
 - 4.- Músculo liso visceral.
 - 5.- Potencial de membrana y de acción del músculo liso.
 - 6.- Excitación del músculo liso visceral.
 - 7.- Despolarización del músculo liso multiunitario sin potencial de acción.
 - 8.- Acoplamiento excitación-contracción. Papel de los iones de calcio.
 - 9.- Bomba de calcio.
 - 10.- Características de la contracción del músculo liso.
 - 11.- Tono del músculo liso.

TEMA N° 5 SINAPSIS

- I. Introducción.
- II. Clasificación.
- III. Anatomía fisiológica de la sinapsis.
 - 1.- Terminal pre-sináptico.
 - 2.- Hendidura o espacio sináptico.
 - 3.- Membrana post-sináptica.
- IV. Principios de convergencia y divergencia.
- V. Transmisión en las sinapsis.
- VI. Sinapsis excitatorias.
 - 1.- Suma espacial.
 - 2.- Suma temporal.
 - 3.- Naturaleza del transmisor excitador.
 - 4.- Implicaciones farmacológicas.
- VII. Sinapsis inhibitorias.

- 1.- Inhibición pre-sináptica.
- 2.- Inhibición post-sináptica.
- 3.- Transmisor inhibitorio.

VIII. Propiedades de las sinapsis.

- 1.- Conducción unidireccional.
- 2.- Retraso sináptico.
- 3.- Vulnerabilidad de las sinapsis a la hipoxia y sustancias químicas.
- 4.- Fatiga de la transmisión sináptica.
- 5.- Facilitación post-tetánica.
- **IX.** Sinapsis ganglionar.
- X. Sinapsis neuro-muscular.
 - 1.- Anatomía fisiológica de las sinapsis.
 - 2.- Transmisión neuromuscular. Secuencia de fenómenos.
 - 3.- Potencial de placa. Características.
 - 4.- Microfisiología de la placa motora.
 - 5.- Fatiga de la unión neuromuscular.
 - 6.- Hipersensibilidad por denervación.
 - 7.- Farmacología de la placa motriz.
 - 8.- Síntesis, almacenamiento e hidrólisis del mediador químico.
 - 9.- Drogas que afectan la transmisión neuromuscular.

TEMA N° 6 REFLEJOS

- I. Introducción.
- II. Organización de un arco reflejo.
 - 1.- Receptores:
 - 1.1. Concepto de receptor.
 - 1.2. Clasificación.
 - 1.3. Fenómenos eléctricos en un receptor potencial de base iónica de la excitación, potencial de acción.
 - 2.- Vías de conducción (aferentes).
 - 3.- Centros del reflejo: encefálicos y medulares.
 - 4.- Vías eferentes.
 - 5.- Efectores.
 - 6.- Fenómeno de la acomodación.
- Clasificación de los refleios.
 - 1.- Generalidades.
 - 2.- Huso muscular: estructura, inervación y estimulación.
 - 3.- Efecto de la descarga eferente gamma.
 - 4.- reflejo monosináptico, inervación recíproca.
 - 5.- reflejo multisináptico.

TEMA N° 7 SISTEMA NERVIOSO AUTÓNOMO

- I. Introducción.
- **II.** Organización de las funciones del sistema nervioso autónomo o vegetativo.
- III. Diferencias entre el sistema nervioso autónomo y el somático.
 - 1.- Anatómicas.
 - 2.- Químicas.
 - Funcionales.
- IV. Divisiones del sistema nervioso vegetativo.
 - 1.- División simpática o toraco-lumbar.
 - 2.- División parasimpática o cráneo-sacra.
- V. División simpática.
 - 1.- Anatomía.
 - 2.- Mediadores químicos:
 - 2.1. En sinapsis ganglionar.
 - 2.2. En la unión neuro-efectora.
 - 2.3. En la médula suprarrenal y glándulas sudoríparas.
 - 3.- Síntesis, almacenamiento, liberación e hidrólisis de la acetilcolina.
 - 4.- Mediador químico de la sinapsis neuroefectora:
 - 4.1. Morfología y distribución del terminal simpático o retículo terminal.
 - 4.2. Síntesis y almacenamiento de las catecolaminas.
 - 4.3. Liberación de las catecolaminas. Tono del simpático.
 - 4.4. Inactivación de las catecolaminas MAO y COMT. Mecanismo de recaptación.
 - 4.5. Acción de la NE y E en el hombre.
 - 4.6. Concepto de receptor para explicar estas diferencias.
 - 5.- Funciones del simpático. Características de la respuesta simpática. Inhibidores de la MAO.
 - 6.- Drogas simpático-miméticas. Drogas simpático-líticas. Noradrenalina tisular.
- VI. División parasimpática.
 - 1.- Anatomía.
 - Mediadores químicos en la sinapsis ganglionar y neuroefectora.
 Acción nicotínica y muscarínica de la acetilcolina. Bloqueadores de ambas acciones.
 - 3.- Funciones del parasimpático. Factores que intervienen en las diferentes acciones de la acetilcolina.
 - 4.- Drogas parasimpático-miméticas. Drogas parasimpático-líticas.
- VII. Centros vegetativos.
- VIII. Vías aferentes del sistema nervioso vegetativo.

- **IX.** Sinergia, disociación y antagonismo entre la división simpática y la división parasimpática.
- X. Interacción psicomática.
- **XI.** Papel de los sistemas nervioso vegetativo y endocrino en la homeóstasis.

ESTRATEGIA (METODOLOGÍA):

Exposiciones teóricas.

Exposiciones teórico-prácticas.

ESTRATEGIA (ACTIVIDADES):

- a) Exposición teórico-práctica de la histología del tejido nervioso y muscular.
- Exposición teórica y proyección de diapositivas acerca de la excitabilidad nerviosa y muscular, sinapsis, reflejos y fisiología del sistema nervioso autónomo.

ACTIVIDADES DE LOS ALUMNOS:

Asistencia obligatoria a las diversas exposiciones teóricas y teórico-prácticas. Asistencia obligatoria al video de trabajos prácticos.

Lectura y preparación previa de cada uno de los temas que componen la unidad. Estudio previo de los experimentos de la guía de trabajos prácticos.

RECURSOS:

Medios audiovisuales tales como:

- Transparencias.
- Diapositivas.
- Videotape.

EVALUACIÓN:

Un examen teórico (segundo parcial).

BIBLIOGRAFÍA:

Específica:

Material de apoyo realizado por las Cátedras de Histología General y Fisiología Humana.

Complementaria:

Histología Básica de Junqueira y Carneiro.

Manual de Fisiología Médica de W. Gannong.

Bases Fisiológicas de la Práctica Médica de Bess y Taylor.

Bases Farmacológicas de la Terapéutica de Goodman y Gilman (para S.N.A.).

UNIDAD III. HISTOLOGÍA Y FISIOLOGÍA CARDIOVASCULAR

OBJETIVOS GENERALES:

- 1. Que el estudiante sea capaz de: conocer la estructura anatómica e histológica del corazón, así como también los diversos mecanismos que explican su funcionamiento.
- 2. Que el estudiante sea capaz de: conocer la estructura anatómica e histológica de los vasos sanguíneos y explicar la hemodinamia.

OBJETIVOS ESPECÍFICOS:

- 1. Describir anatómicamente el corazón.
- 2. Describir e identificar histológicamente:
 - 2.1. Esqueleto fibroso del corazón.
 - 2.2. Tejido nodal.
 - 2.3. Tejido de conducción.
- **3.** Comprender y conocer las funciones y propiedades del corazón, la mecánica y regulación de la actividad cardiaca.
- 4. Describir anatómicamente la estructura de los vasos sanguíneos.
- **5.** Describir e identificar histológicamente: arterias grandes, medianas y pequeñas. Arteriolas y metarteriolas. Capilares, vénulas y venas.
- **6.** Comprender y conocer los mecanismos que originan el flujo sanguíneo, la resistencia periférica, presión arterial y la circulación por los diversos territorios (arterial, microcirculatorio, venoso, linfático y pulmonar).

CONTENIDO PROGRAMÁTICO:

TEMA Nº 1 HISTOLOGÍA DEL CORAZÓN

- I. Conformación histológica
 - 1.- Paredes del corazón: definición, situación, estructura histológica.
 - 2.- Músculo cardiaco: forma, tamaño, estriaciones transversales, núcleo, triada, discos intercalares, organoides e inclusiones.
 - 3.- Esqueleto fibroso del corazón: estructura histológica y localización.
 - 4.- Válvulas: estructura y situación.
 - 5.- Sistema generador y transmisor del impulso cardiaco (tejido nodal: estructura y situación).

TEMA N° 2 FISIOLOGÍA DEL CORAZÓN

- I. Función del corazón.
 - 1.- Su papel en el sistema circulatorio. Consideraciones anatómicas.
 - 2.- Propiedades del corazón:
 - 2.1. Generales (que contribuyen al complemento de su función):
 - 2.1.1. Excitabilidad.

- 2.1.2. Contractilidad.
- 2.2. Especiales:
 - 2.2.1. Automatismo.
 - 2.2.2. Ritmicidad.
 - 2.2.3. Conductibilidad.
- II. Propiedades del músculo cardiaco.
 - 1.- Excitabilidad y contractilidad. Potenciales típicos de diferentes tejidos. Período refractario. Extrasístole. Pausa compensadora.
 - 2.- Fisiología del marcapaso (automatismo).
 - 3.- Conductibilidad. Origen y propagación del impulso cardiaco.
 - 4.- Ritmo cardiaco.
- III. El corazón como bomba.
 - 1.- Mecánica de la actividad cardiaca.
 - 2.- Actividad auricular y ventricular, significada de la anatomía e histología del corazón en su funcionamiento. Funcionamiento valvular. Sístole auricular Sístole ventricular Diástole.
 - 3.- Cambios de presión y volumen durante el ciclo cardiaco.
 - 4.- Ruidos cardiacos. Origen de ellos. Auscultación cardiaca. Modificaciones de los ruidos.
- IV. Acción de diferentes factores sobre la fisiología cardiaca.
 - 1.- Variaciones de temperatura.
 - Variaciones de concentraciones iónicas (efecto del calcio y del potasio).
 - 3.- Acetilcolina y catecolaminas.
- V. Dinámica cardiovascular.
 - 1.- Frecuencia cardiaca.
 - 2.- Volumen de llenado diastolítico.
 - 3.- Función del pericardio.
 - 4.- Volumen minuto cardiaco.
 - 5.- Trabajo cardiaco.
- VI. Nutrición del corazón.
 - 1.- Flujo sanguíneo coronario. Metabolismo.
- VII. Regulación del corazón.
 - 1.- Mecánica: autorregulación heterométrica. Ley de Franck-Starling.
 - 2.- Nerviosa: sistema nervioso autónomo.
 - 3.- Hormonal: tiroxina, catecolaminas y otras hormonas.

TEMA Nº 3 HISTOLOGÍA DE LOS VASOS SANGUÍNEOS

- I. Conformación histológica.
 - 1.- Características generales del sistema circulatorio. Estructura de los vasos sanguíneos.

- 2.- Estructura general de los capilares: células endoteliales y membrana basal.
- 3.- Clasificación de los capilares:
 - 3.1. Típicos: continuos y fenestrados.
 - 3.2. Atípicos o sinusoides.
- 4.- Estructura histológica de cada una de las variedades.
- 5.- Semejanzas y diferencias entre las diferentes variedades.
- 6.- Sitios del organismo donde pueden encontrarse.
- 7.- Estructura del peritelio. Las metarteriolas y las anastomosis arteriovenosas.
- 8.- Estructura de arterias y venas:
 - 8.1. Túnica íntima.
 - 8.2. Túnica media.
 - 8.3. Túnica adventicia.
 - 8.4. Vasa vasorum.
 - 8.5. Nervios.
 - 8.6. Válvulas.
- 9.- Distintas variedades de arterias: descripción histológica específica de cada una de las variedades.
- Distintas variedades de venas: descripción histológica específica de cada una de las variedades.
- 11.- Semejanzas y diferencias entre arterias y venas.
- 12.- Válvulas.

TEMA Nº 4 FISIOLOGÍA CIRCULATORIA (VASOS SANGUÍNEOS)

- Breve revisión anatómica.
 - 1.- Circulación sistémica.
 - 2.- Circulación pulmonar.
 - 3.- Clasificación del sistema vascular:
 - 3.1. Sistema distribuidor.
 - 3.2. Sistema de intercambio.
 - 3.3. Sistema de recolección.
- II. Características del sistema vascular.
 - 1.- Diámetro del lecho vascular.
 - 2.- Area de sección del lecho vascular.
 - 3.- Volumen de sangre en las diferentes porciones del sistema vascular.
- III. Principios generales de la dinámica de los fluidos.
 - 1.- Flujo sanguíneo:
 - 1.1. Concepto de velocidad crítica y número indefinido de Reynolds.
 - 1.2. Tipos de flujo sanguíneo:
 - 1.2.1. Laminado.

- 1.2.2. Turbulento.
- 1.2.3. Pulsátil.
- 1.2.4. Continuo.
- 1.3. Características fisiológicas del flujo sanguíneo:
 - 1.3.1. Caudal del flujo.
 - 1.3.2. Velocidad del flujo.
- 1.4. Variaciones fisiológicas del flujo sanguíneo:
 - 1.4.1. Por variaciones del gasto cardiaco.
 - 1.4.2. En el ejercicio.
 - 1.4.3. En la ingesta de alimentos.
 - 1.4.4. Por exposición a temperaturas elevadas.
 - 1.4.5. Por variaciones del lecho vascular: en la vasoconstricción, en la vasodilatación.
- 1.5. Factores que influyen sobre el flujo sanguíneo. Ecuación de Poiseuille-Hagen.
- 2.- Resistencia periférica:
 - 2.1. Cálculo de la resistencia periférica.
 - 2.2. Unidad de resistencia periférica.
 - 2.3. Cifras normales y variaciones fisiológicas en el sistema de la aorta.
 - 2.4. Cifras normales y variaciones fisiológicas en el sistema de la pulmonar.
- 3.- Presión arterial:
 - 3.1. Presiones: máxima, mínima, media y diferencial.
 - 3.2. Relaciones de la presión arterial con el flujo y con la resistencia.
 - 3.3. Factores que modifican la presión arterial media.
 - 3.4. Factores que modifican las presiones: máxima, mínima y diferencial.
 - 3.5. Valores normales y variaciones fisiológicas.
 - 3.6. Métodos de estudio de la presión arterial:
 - 3.6.1. Directos o experimentales.
 - 3.6.2. Indirectos o clínicos: palpatorios (Riva-Rocci) y auscultatorio (Korotkow).
 - 3.7. Regulación de presión arterial y mecanismos nerviosos reflejos:
 - 3.7.1. Reflejo que parte de los presorreceptores.
 - 3.7.2. Reflejo que parte de los quimiorreceptores.
- IV. Pulso arterial.
 - 1.- Métodos de estudio del pulso arterial:
 - 1.1. Registro gráfico.
 - 1.2. Método palpatorio:

- 1.2.1. Características del pulso: amplitud, frecuencia, ritmo, igualdad y dureza.
- V. Circulación a nivel de la unidad microcirculatoria.
 - 1.- Particularidades hemodinámicas:
 - 1.1. Flujo.
 - 1.2. Presión.
 - 1.3. Resistencia.
 - 2.- Capacidad real y funcional de la U.M.C.
 - 3.- Regulación del flujo sanguíneo en la U.M.C.
 - 4.- Intercambio capilar-tejido:
 - 4.1. Pinocitosis.
 - 4.2. Ultrafiltración.
 - 4.3. Difusión.
- VI. Circulación linfática.
 - 1.- Particularidades estructurales de la red linfática.
 - 2.- Origen y composición de la linfa.
 - 3.- Factores que determinan la velocidad del flujo linfático: presión del líquido intersticial, bomba linfática.
- VII. Circulación venosa.
 - 1.- Anatomía de la circulación venosa.
 - 2.- Particularidades hemodinámicas:
 - 2.1. Flujo.
 - 2.2. Presión.
 - 2.3. Resistencia.
 - 3.- Retorno venoso. Factores que ayudan al retorno venoso:
 - 3.1. Bomba toraco-abdominal.
 - 3.2. Contracciones musculares.
 - 3.3. Latidos arteriales.
 - 3.4. Presión hidrostática de los tejidos.
 - 3.5. Válvulas.
 - 3.6. Efecto cardiaco.
- VIII. Circulación pulmonar.
 - 1.- Características anatómicas y funcionales del circuito pulmonar.
 - 2.- Características hemodinámicas de la circulación pulmonar:
 - 2.1. Presión.
 - 2.2. Flujo.
 - 2.3. Resistencia periférica.
 - 2.4. Circulación linfática.
 - 2.5. Intercambio capilar-alvéolo.
 - 2.6. Retorno venoso.
 - 2.7. Diferencias entre el sistema pulmonar y el sistema de la aorta.

ESTRATEGIA (METODOLOGÍA): Exposiciones teóricas. Exposiciones teórico-prácticas. Vídeo de trabajo práctico.

ESTRATEGIA (ACTIVIDADES): Exposiciones teórico-prácticas de la histología de corazón y vasos sanguíneos, incluyendo presentación audiovisual del material de práctica. Exposición teórica y proyección de diapositivas sobre la fisiología del corazón y vasos sanguíneos. Proyección y discusión del video de corazón perfundido.

ACTIVIDADES DE LOS ALUMNOS:

Asistencia obligatoria a las diversas exposiciones teóricas y teórico-prácticas. Lectura y preparación previa de cada uno de los temas que componen la unidad. Estudio previo de los experimentos de la guía de trabajos prácticos.

RECURSOS: Medios audiovisuales tales como:

- o Transparencias.
- o Diapositivas.
- Videotape.

EVALUACIÓN:

Un examen teórico (tercer parcial).

La materia práctica será evaluada en el examen práctico.

BIBLIOGRAFÍA:

Específica: Material de apoyo realizado por las Cátedras de Histología General

y Fisiología Humana.

Complementaria: Tratado de Histología de Arthur W. Ham.

Tratado de Fisiología de Arthur Guyton.

Tratado de Fisiología Médica de W. Gannong.